3. The method of claim 2, wherein:

the depth map is a first depth map;

the display profile is a first display profile;

the corrective eyewear scenario is a first corrective eyewear scenario;

the graphical output is a first graphical output; the method further comprises:

scanning at least the portion of the face of the user using the sensor to generate a second depth map;

determining a second corrective eyewear scenario using the second depth map;

selecting a second display profile that is associated with the second corrective eyewear scenario; and

generating a second graphical output in accordance with the selected second display profile; and

the second corrective eyewear scenario corresponds to the registered user not wearing the corrective eyewear.

4. The method of claim 1, wherein:

the threshold is a first threshold;

the similarity score is a first similarity score; and

determining the corrective eyewear scenario using the depth map, comprises:

identifying a subset of identity maps of the set of stored biometric identity maps, the subset of identity maps associated with the corrective eyewear scenario; and determining a second similarity score between the depth map and the subset of identity maps.

5. The method of claim 1, wherein:

the corrective eyewear scenario corresponds to the registered user not wearing a corrective eyewear; and

the graphical output compensates for a vision deficiency while the user is not wearing the corrective eyewear.

6. The method of claim **1**, further comprising:

detecting an eye movement of the user; and

in accordance with the eye movement corresponding to an eye strain condition, modifying the graphical output of the portable electronic device.

7. The method of claim 1, wherein:

the display profile is associated with prescription information related to a visual acuity of the user; and

the graphical output is generated based, at least in part, on the prescription information.

8. A method of providing a graphical output for an electronic device, the method comprising:

displaying a set of graphical objects, each one of the set of graphical objects produced using a different level of vision correction;

receiving a user selection of a graphical object of the set of graphical objects;

in response to the user selection, identifying a display profile that is associated with the selected graphical object;

generating the graphical output in accordance with the display profile;

scanning at least a portion of a face of a user using a

generating a depth map using the scan; and

storing the depth map and associating the depth map with the display profile.

9. The method of claim 8, further comprising:

determining, based on the user selection, that the user has a myopic vision condition;

generating a new depth map based on a subsequent scan of the user;

determining, using the new depth map, whether the user is wearing a corrective eyewear; and

in accordance with a determination that the user is wearing the corrective eyewear, causing a display to display the graphical output.

10. The method of claim 8, further comprising:

determining, based on the user selection, that the user has a hyperopic vision condition;

generating a new depth map based on a subsequent scan of the user:

determining, from the new depth map, whether the user is wearing a corrective eyewear; and

in accordance with a determination that the user is not wearing the corrective eyewear, causing a display to display the graphical output.

11. The method of claim 8, further comprising:

detecting an eye movement of the user using the sensor; and

in accordance with a determination that the eye movement corresponds to an eye strain condition, generating the graphical output.

12. The method of claim 8, wherein:

the display profile is one of a set of display profiles;

each display profile of the set of display profiles is associated with a different appearance of the user; and each different appearance of the user corresponds to a respective corrective eyewear scenario.

13. The method of claim 8, wherein:

displaying the set of graphical objects comprises presenting a set of successive screens to the user; and

each one of the set of successive screens contains one or more graphical objects of the set of graphical objects.

14. The method of claim 8, further comprising:

determining, from the user selection, a visual acuity of the user; and

displaying information regarding the visual acuity to the user.

15. An electronic device comprising:

a housing;

a display positioned at least partially within the housing and configured to display a graphical output;

a transparent cover positioned at least partially over the display;

an optical sensor positioned below the transparent cover and configured to obtain a scan of a portion of a face of a user; and

a processor configured to:

generate a depth map using the scan;

determine a similarity score between the depth map and one or more identity maps of a set of stored biometric identity maps that are associated with a registered user:

in response to the similarity score exceeding a threshold, identify the user as the registered user;

determine a corrective eyewear scenario using the depth map;

select a display profile that is associated with the corrective eyewear scenario; and

generate a graphical output in accordance with the selected display profile.

16. The electronic device of claim 15, wherein:

the optical sensor comprises a light emitting module configured to project a dot pattern on the portion of the face of the user; and